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Abstract
Having gained some insight into the concept of ‘actual and virtual paths’ in a
phase-space formalism (Sobouti and Nasiri 1993 Int. J. Mod. Phys. B 7 3255,
Nasiri et al 2006 J. Math. Phys. 47 092106), in the present paper we address
the question of ‘extended’ phase-space stochastic quantization of Hamiltonian
systems with first class holonomic constraints. We present the appropriate
Langevin equations, which quantize such constrained systems, and prove the
equivalence of the stochastic quantization method with the conventional path-
integral gauge measure of Faddeev–Popov quantization.

PACS numbers: 02.50.Ey, 02.50.Ga, 03.65.Ta, 05.30.−d, 05.10.Gg

1. Introduction

The concept of an ‘extended’ Lagrangian, L(p, q, ṗ, q̇), in phase-space allows a subsequent
extension of Hamilton’s principle to minimum actions along the actual trajectories in (p, q)

rather than in q-space. The following notational conventions are used throughout this paper: ṗ

denotes dp/dx0 and so on, where x0 is the real time. This extension, in turn, allows a definition
of ‘second’ momenta πp = δL/δṗ and πq = δL/δq̇, and a subsequent introduction of an
‘extended’ phase-space (p, q, πp, πq) and of an ‘extended’ Hamiltonian, H(p, q, πp, πq)

[1]. This simple formalism manifests its practical and technical virtue in the proposed
canonical quantization in (p, q) space that at once provides a framework for quantum statistical
mechanics, for the classical statistical mechanics (Liouville’s equation), for the conventional
quantum mechanics as a special case, for von Neumann’s density matrix and its equation of
evolution as its inevitable corollaries. Wigner’s [2] distributions and the equation satisfied by
them are also obtained from those of [1] by an appropriate canonical transformation in the
proposed (p, q, πp, πq)-space.

Ordering of p and q factors in conventional quantum mechanics has always been a matter
of debate. For, there is nothing in the basic postulates of quantum mechanics to decide on
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the issue. On the other hand, the phase-space quantization is constructed on the premises
that p and q are independent variables. Thus, in reducing the theory to that of Schrödinger
and/or Heisenberg, the standard ordering emerges as the rule of game: for example, qp in q-
representation and pq in p-representation. For Wigner’s distributions the appropriate ordering
is the symmetric one: for example, 1

2 (pq + qp) instead of pq or qp. This ordering is also
obtained from the standard ordering by the same canonical transformation which transforms
the state functions and evolution equations of [1] to those of Wigner.

Since Wigner’s initial attempt, 1932, alternative phase-space distributions have been
proposed. Of these alternatives, the ones compatible with the uncertainty principle are
obtainable from that of [1] by suitable canonical transformation in (p, q, πp, πq)-space.
Husimi’s all-positive distributions [3] are, however, exceptions. For example, his averaging
of Wigner’s distributions over small cells around phase-space points makes the averaged
distributions incompatible with the uncertainty principle.

The stochastic quantization method (SQM) of recent years [4] is an alternative to the
conventional canonical and path-integral quantizations. Conceptually and techniquewise it is
versatile and powerful. Our interest here is to generalize SQM to study the classical stochastic
processes underlying the phase-space quantization. In its present formulation, SQM exploits
the well-defined Markoffian process of Wiener’s type with Gaussian white noise. One may,
however, envisage that different stochastic processes with respect to a fictitious time may
yield different variations of quantum theories. In what follows, we give a SQM theory of the
phase-space quantization. This paper consists of two parts. Section 2 deals with unconstrained
systems and section 3 considers the constrained ones. An implicit summation on repeated
indices is assumed.

2. An extended phase-space formulation of the SQM

Consider a dynamical system with N degrees of freedom described by the 2N coordinates
q = (q1, . . . , qN), momenta p = (p1, . . . , pN), a Lagrangian Lq(q, q̇) in q-representation
and the corresponding Lp(p, ṗ) in p-representation. In general, Lq and Lp are the Fourier
transforms of each other. In the framework of the proposed extended phase-space formalism
of [1], the extended Lagrangian is written as

L(p, q, ṗ, q̇) = −q̇ipi − qiṗi + Lq + Lp, (1)

where p and q are independent and not, in general, canonical pairs. They could be so but only
through a proper choice of the initial values. The first two terms in equation (1) constitute a
total time derivative and are introduced for later convenience. The independent nature of p
and q gives the freedom of introducing a second set of canonical momenta for both p and q
through the extended Lagrangian of equation (1). Thus,

πqi
= ∂L

∂q̇i

= ∂Lq

∂q̇i

− pi, πpi
= ∂L

∂ṗi

= ∂Lp

∂ṗi

− qi. (2)

Vanishing of πq /or πp is the condition for p and q to constitute a canonical pair. In the
language of statistical quantum mechanics this choice picks up a pure state. Otherwise, one
deals with a mixed state. One may now define an extended Hamiltonian

H(p, q, πp, πq) = πqi
q̇i + πpi

ṗi − L(p, q, ṗ, q̇)

= H(p + πq, q) − H(p, q + πp) =
∑
n=1

1

n!

{
∂nH

∂pn
πn

q − ∂nH

∂qn
πn

p

}
, (3)
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where H(p, q) = piq̇i − Lq = qiṗi − Lp is the conventional Hamiltonian of the system.
Introducing an imaginary time x4 = ix0, we define the Euclidian extended action as

S[p, q, πp, πq ] =
∫ [

−iπpi

dpi

dx4
− iπqi

dqi

dx4
+ H(p, q, πp, πq)

]
dx4. (4)

Following a general prescription of SQM [4], in the case at hand the Parisi–Wu ansatz consists
of proposing a Markoffian hypothetical stochastic process by the following set of Langevin
equations:

dqi

dt
= − δS

δqi

+ ξ
q

i (t), γ
dπqi

dt
= − 1

γ

δS

δπqi

+ η
q

i (t),

γ
dpi

dt
= − 1

γ

δS

δpi

+ η
p

i (t),
dπpi

dt
= − δS

δπpi

+ ξ
p

i (t),

(5)

where an additional ‘fictitious time’ t is introduced, the ξν
i (t) and ην

i (t) (ν = q, p) are Gaussian
white-noise sources with〈
ξν
i (t), ξ ν ′

j (t ′)
〉 = 2δij δνν ′δ(t − t ′),

〈
ην

i (t), η
ν ′
j (t ′)

〉 = 2δij δνν ′δ(t − t ′),〈
ξν
i (t), ην ′

j (t ′)
〉 = 0,

(6)

and γ is an arbitrary dimensional parameter. In this case, we have only to look upon
the fictitious time t as a mathematical tool, but need not find its physical meaning. A
remark on notation: functional dependences on variables are indicated by square brackets,
such as S[p, q, . . .]. Functional derivatives are shown by δ’ such as δS/δp, etc. The
formalism being followed is based on a well-defined classical Wiener–Markoffian process.
The Gaussian white noises incorporated into equation (5) are designed to yield the quantum
mechanics as its thermal equilibrium limit. Therefore, the task is to show that the
dynamical system described by equations (5) and (6) has an equilibrium distribution equivalent
to the conventional path-integral measure. The procedure is (a) to define a Fokker–
Planck Lagrangian based on equation (5), (b) to define Fokker–Planck momenta from this
Lagrangian, (c) to compose a Fokker–Planck Hamiltonian and finally (d) to set up the
Fokker–Planck equation for the distribution of the system in the extended phase-space.
Thus

(a) The Fokker–Planck Lagrangian corresponding to equation (5) is

LF = 1

4

N∑
i=1

[(
dqi

dt
+

δS

δqi

)2

+

(
γ

dπqi

dt
+

1

γ

δS

δπqi

)2

+

(
γ

dpi

dt
+

1

γ

δS

δpi

)2

+

(
dπpi

dt
+

δS

δπpi

)2
]

, (7)

where the first and fourth terms in the bracket originate from the white-noise sources
ξν
i (t) and the second and third originate from ην

i (t).
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(b) The Fokker–Planck canonical momenta are

πF
qi

= ∂LF

∂(dqi/dt)
= 1

2

(
dqi

dt
+

δS

δqi

)
,

πF
πqi

= ∂LF

∂
(
dπqi

/dt
) = γ

2

(
γ

dπqi

dt
+

1

γ

δS

δπqi

)
,

πF
pi

= ∂LF

∂(dpi/dt)
= γ

2

(
γ

dpi

dt
+

1

γ

δS

δpi

)
,

πF
πpi

= ∂LF

∂
(
dπpi

/dt
) = 1

2

(
dπpi

dt
+

δS

δπpi

)
.

(8)

(c) The Fokker–Planck Hamiltonian is

HF = πF
qi

dqi

dt
+ πF

πqi

dπqi

dt
+ πF

pi

dpi

dt
+ πF

πpi

dπpi

dt
− LF . (9)

(d) Finally, the Fokker–Planck equation for the probability distribution �[p, q, πp, πq, t] is

∂

∂t
�[p, q, πp, πq, t] = HF �[p, q, πp, πq, t]

=
[

∂

∂qi

(
∂

∂qi

+
δS

δqi

)
+

1

γ 2

∂

∂πqi

(
∂

∂πqi

+
δS

δπqi

)
+

1

γ 2

∂

∂pi

(
∂

∂pi

+
δS

δpi

)
+

∂

∂πpi

(
∂

∂πpi

+
δS

δπpi

)]
�[p, q, πp, πq, t].

(10)

Here we have replaced the ‘canonical’ momenta πF
qi

, πF
πqi

, πF
pi

and πF
πpi

with −∂/∂qi,

−∂/∂πqi
,−∂/∂pi and −∂/∂πpi

, respectively. The equilibrium distribution of equations (10)
clearly reads

�[p, q, πp, πq] ∝ exp(−S[p, q, πp, πq]). (11)

Thus, the Langevin equation (5) together with equations (6) gives the same result as the
conventional path-integral quantization method in the extended phase-space if only the drift
forces

Ki(p, . . . , t) = −
(

δS[p, . . .]

δpi

)
p=p(x0,t)

,

etc, have a damping effect. Along the actual trajectories in q-space equation (11) reproduces
the results obtained in [4]. Along the trajectories in (p, q) space, however, it produces the
state functions, χ(p, q, x0), of [1]

ih̄
∂

∂x0
χ = Hχ =

{
H

(
p − ih̄

∂

∂q
, q

)
− H

(
p, q − ih̄

∂

∂p

)}
χ

=
∑
n=1

(−ih̄n)

n!

{
∂nH

∂pn

∂n

∂qn
− ∂nH

∂qn

∂n

∂pn

}
χ. (12)

In order to obtain a feeling for this point we re-instate h̄ for the rest of this section. Solutions
of equation (12) are

χ = aαβψα(q, x0)φ
∗
β(p, x0) e−ipq/h̄, a = a†, positive definite, tr a = 1, (13)

4
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where summation over repeated indices is implied, and ψα and φ∗
α are solutions of the

conventional Schrödinger equation in q- and p-representations, respectively. They are mutually
Fourier transforms

ψα(q, x0) = (2πh̄)−N/2
∫

φα(p, x0) eipq/h̄ dp,

φα(p, x0) = (2πh̄)−N/2
∫

ψα(q, x0) e−ipq/h̄ dq.

(14)

Note that the α and β are not, in general, eigenindices. The normalization condition for χ is∫
χ dp dq = tr(a) = 1. (15)

See [1] for further details.

3. Stochastic quantization of extended dynamical systems with constraints

In this section we discuss the SQM of an extended dynamical system with M first class
independent and irreducible constraints

φa(p, q, πp, πq) = 0, a = 1, 2, . . . , M < N. (16)

For reasons of simplicity let there also be M gauge conditions:

χa(p, q, πp, πq) = 0, a = 1, 2, . . . , M. (17)

Equations (16) and (17) define a (4N − 2M) dimensional submanifold in phase-space on
which the system orbits dwell. For convenience we introduce the following new variables:

xqi
= (

q1, . . . , qN , πp1 , . . . , πpN

)
, xpi

= (
p1, . . . , pN, πq1 , . . . , πqN

)
. (18)

The gauge conditions are such that det �ab �= 0, where �ab is the Poisson bracket of χa and
φb,

�ab = ∂χa

∂xqi

∂φb

∂xpi

− ∂χa

∂xpi

∂φb

∂xqi

. (19)

The Euclidean path-integral measure for such a system can be obtained by the quantization
procedure of [5]. The Faddeev–Popov path-integral formula for this system is

〈f |i〉 = 1

2N

∫
Dxqi

Dxpi
δ(φa)δ(χa) det �ab exp(−S[xp, xq ]), (20)

where S[xp, xq] is the extended Euclidian action of equation (4). Our major goal is now to
reproduce equation (20) from the standpoint of SQM in phase-space in the thermal equilibrium
limit. The Langevin equations for this system are

dxqi

dt
= − δS

δxqi

−
(

λa ∂φa

∂xpi

− νa ∂χa

∂xpi

)
+ ξi, ξi = (

ξ
q

i , ξ
p

i

)
,

dxpi

dt
= − δS

δxpi

+

(
λa ∂φa

∂xqi

− νa ∂χa

∂xqi

)
+ ηi, ηi = (

η
p

i , η
q

i

)
,

(21)

where λa(xq, xp) and νa(xq, xp), a = 1, . . . ,M, are 2M Lagrange multiplier functions. They
are introduced to make provisions for the forces arising from the constraints and the gauge
conditions. To eliminate the Lagrange multipliers we transform from (xqi, xpi; i = 1, . . . , 2N)

to the new variables (Qi, P i; i = 1, . . . , 2N) such that

Qa = φa, P a = χa, a = 1, . . . ,M (22)

5
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and determine the remaining ones from the following differential equations:

∂Qα

∂xqi

∂φa

∂xqi

+
∂Qα

∂xpi

∂φa

∂xpi

= 0,
∂Qα

∂xqi

∂χa

∂xqi

+
∂Qα

∂xpi

∂χa

∂xpi

= 0,

∂P α

∂xqi

∂φa

∂xqi

+
∂P α

∂xpi

∂φa

∂xpi

= 0,
∂P α

∂xqi

∂χa

∂xqi

+
∂P α

∂xpi

∂χa

∂xpi

= 0.

(23)

0.8cm a = 1, . . . , M;α = M + 1, . . . , 2N. Hereafter, we will reserve the subscripts a, b, etc,
for indices ranging from 1 to M; α, β, etc, for those ranging from M + 1 to 2N ; and i, j , etc
for the whole range, 1 to 2N . The first 2M variables of equation (22) are, by equations (16)
and (17), constants along the phase-space trajectories of the system and satisfy

dQa

dt
= ∂Qa

∂xqi

dxqi

dt
+

∂Qa

∂xpi

dxpi

dt
= 0, (24)

dP a

dt
= ∂P a

∂xqi

dxqi

dt
+

∂P a

∂xpi

dxpi

dt
= 0. (25)

To obtain the Langevin equations for dQα/dt and dP α/dt we express them in terms
(dxqi

/dt); and (dxpi
/dt) as in equations (24) and (25), and substitute for the latter from

equations (21). The Lagrange multipliers drop out on account of equations (24) and (25). We
arrive at

dQα

dt
= −

(
∂Qα

∂xqi

∂Qβ

∂xqi

+
∂Qα

∂xpi

∂Qβ

∂xpi

)
δS

δQβ

−
(

∂Qα

∂xqi

∂P β

∂xqi

+
∂Qα

∂xpi

∂P β

∂xpi

)
δS

δP β
+

∂Qα

∂xqi

ξi +
∂Qα

∂xpi

ηi, (26)

dP α

dt
= −

(
∂P α

∂xqi

∂Qβ

∂xqi

+
∂P α

∂xpi

∂Qβ

∂xpi

)
δS

δQβ

−
(

∂P α

∂xqi

∂P β

∂xqi

+
∂P α

∂xpi

∂P β

∂xpi

)
δS

δP β
+

∂P α

∂xqi

ξi +
∂P α

∂xpi

ηi . (27)

Due to conditions of equations (23), the terms with i = a = 1, . . . ,M , do not contribute to
equations (26) and (27). Therefore, the sum over i is replaced by the sum over β. Next we
attempt to write equations (23)–(27) in a covariant form; that is, in a form invariant under
general coordinate transformations. We introduce the notation

(xI ) = (xI ) = (xqi, xpi), (XI ) = (Qa, P a,Qα, P α), I = 1, . . . , 4N. (28)

Hereafter, the following convention will be observed in indexing the new variables. To
begin with, the x-coordinates are Euclidean ones. It will not matter if they are indexed
covariantly or contravariantly. The X-coordinates, on the other hand, are curvilinear ones. A
contravariant index could be lowered by an appropriate metric tensor to be introduced shortly.
As indicated by the defining equation (28), the manifold M4N spanned by X-coordinates
could be split into two submanifolds M2M and M4N−2M . The X-coordinates spanning M2M

will be indexed by A,B, . . . = 1, . . . , 2M . Those spanning M4N−2M will be indexed by
�,�, . . . = 2M + 1, . . . , 4N . The indices I, J, . . . , will be reserved for the whole manifold
M4N . The contravariant metric tensor for the curvilinear X-coordinates is, by equation (28),

gIJ = ∂XI

∂xK

∂XJ

∂xK

=
[
gAB

g��

]
, (29)

6
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where the 2M × 2M tensor gAB is

gAB = ∂XA

∂xK

∂XB

∂xK

=
[{φa, φb} {φa, χb}
{χa, φb} {χa, χb}

]
. (30)

The Poisson brackets, here, are to be calculated in (xqi
, xpi

)-coordinates. For conventional
gauge conditions one has {χa, χb} = 0. The Laplace expansion of det gAB then gives

det gAB = − det{φc, χd}det{χe, φf } = det{φc, χd}2, det gAB = det{φc, χd}−2. (31)

The expression for g�� is

g�� = ∂X�

∂xK

∂X�

∂xK

, �,� = 2M + 1, . . . , 4N. (32)

At present, there is no need to manipulate g�� beyond its definition. We are now in a position
to write the Langevin equations in manifest covariant forms. Equations (23) become

dX�

dxI

dXA

dxI

= 0. (33)

Equations (24) and (25) become

dXA

dt
= 0. (34)

Equations (26) and (27), combined together, give

dX�

dt
= −g�� δS̃[X]

δX�
+

∂X�

dxI
ζ I , (35)

where ζ I = (ξ i, ηj ), and S̃[X] = S[x(X)] is the action integral of equation (4) written in
X-coordinates. Equation (34) contains no new information, beyond the fact that φa, χa are
to vanish along the phase-space trajectories. Equation (35) holds on the constraint surface,
M4N−2M . Finally the form-invariant Fokker–Planck equation corresponding to equation (35)
emerges as

∂�̃[X�, t]

∂t
= 1√

det g��

∂

∂X�

[√
det g��g��

(
∂

∂X�
+

δS̃[X]

δX�

)
�̃[X�, t]

]
. (36)

The stationary solution of equation (36) is

�̃eq[X�] = 1√
det g��

exp(−S̃[X�]). (37)

In the limit of thermodynamic equilibrium the probability of finding the system on the
constraint surface in the volume element d(4N−2M)X centred at X� is

1√
det g��

exp(−S̃[X�])d(4N−2M)X = 1√
det g��

exp(−S̃[XI ])δ(2M)(XA)d(4N)X, (38)

where δ(2M)(XA) is the Dirac delta function in M2M . It is introduced to ensure that the system
stays on the constraint surface.

To transform equation (38) back to the Euclidean coordinates {xI } we note that S̃[X]
transform into S[x], and the volume element d(4N)X transforms into

√
detgIJ d(4N)x, where,

from equation (29),

det(gIJ ) = det(gAB)det(g��). (39)

Substitution of equations (39) and (31) into equation (38) gives �q in x-coordinates. Hence

�eq[xp, xq] = det{χa,�b}δ(M)(χc)δ(M)(�d) exp(−S[xp, xq ]). (40)

7



J. Phys. A: Math. Theor. 41 (2008) 315303 G T Ter-Kazarian and Y Sobouti

4. Conclusions

It is worth reflecting briefly upon the results obtained so far. The new conceptual element in the
extended phase-space formulation is noteworthy. Extended canonical transformations allow us
to go from one extended phase-space to another. This unifying feature of the theory makes the
comparison of the various functions existing in the literature possible and transparent. We have
developed the SQM in extended phase-space and shown how this method can be generalized
to deal with systems subjected to first class constraints. We have proved that Lagrange’s
method of undermined multipliers yields the quantization of constrained systems in SQM and,
in a natural way, results in the Faddeev–Popov conventional path-integral measure for gauge
systems. One of the most remarkable features of the SQM is that one may quantize even
dynamical systems with non-holonomic constraints, as is seen in the case of the stochastic
gauge fixing.
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